ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 2]
Остроугольный треугольник $ABC$ вписан в окружность $\Omega$. Пусть $H$ и $M$ – точка пересечения высот и середина стороны $BC$ соответственно. Прямая $HM$ пересекает окружность $\omega$, описанную около треугольника $BHC$, в точке $N\not=H$. На дуге $BC$ окружности $\omega$, не содержащей точку $H$, нашлась точка $P$ такая, что $\angle HMP=90^{\circ}$. Отрезок $PM$ пересекает $\Omega$ в точке $Q$. Точки $B'$ и $C'$ симметричны точке $A$ относительно точек $B$ и $C$ соответственно. Докажите, что описанные окружности треугольников $AB'C'$ и $PQN$ касаются.
Высоты $BE$ и $CF$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Перпендикуляр из $H$ к прямой $EF$ пересекает прямую $\ell$, проходящую через точку $A$ и параллельную $BC$, в точке $P$. Биссектрисы углов, образованных прямыми $\ell$ и $HP$, пересекают прямую $BC$ в точках $S$ и $T$. Докажите, что описанные окружности треугольников $ABC$ и $PST$ касаются.
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке