ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Петров Ф.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 9]      



Задача 66158

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Петров Ф.

На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число  bi ≥ ai  так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство  b1b2...bn ≤ 2(n–1)/2a1a2...an.

Прислать комментарий     Решение

Задача 109758

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Обыкновенные дроби ]
[ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 5-
Классы: 9,10,11

Автор: Петров Ф.

Докажите, что существует бесконечно много натуральных n, для которых числитель несократимой дроби, равной  1 + ½ + ... + 1/n,  не является степенью простого числа с натуральным показателем.

Прислать комментарий     Решение

Задача 116778

Темы:   [ Арифметические функции (прочее) ]
[ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

Автор: Петров Ф.

Для натурального n обозначим  Sn = 1! + 2! + ... + n!.  Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.

Прислать комментарий     Решение

Задача 65883

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 5
Классы: 9,10,11

Автор: Петров Ф.

На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .