ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника? Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым ходом первый игрок выписывает на доску число 1. Затем очередным ходом на доску можно выписать либо число 2a , либо число a+1 , если на доске уже написано число a . При этом запрещается выписывать числа, которые уже написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто выигрывает при правильной игре? Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
Найдите все функции f : На концах клетчатой полоски размером 1×101 клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?
Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что
На концах клетчатой полоски размером 1×101 клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник?
На отрезке [0, N] отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок [0, N], целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка [0, N]?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке