ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены). Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF. |
Страница: << 1 2 3 [Всего задач: 14]
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.
Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Страница: << 1 2 3 [Всего задач: 14]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке