ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Внутри выпуклого четырёхугольника ABCD, в котором  AB = CD,  выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°.
Докажите, что  PB + PC < AD.

Вниз   Решение


Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

ВверхВниз   Решение


В окружность радиуса R вписан многоугольник площади S, содержащий центр окружности, и на его сторонах выбрано по точке. Докажите, что периметр выпуклого многоугольника с вершинами в выбранных точках не меньше 2S/R.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83]      



Задача 30874  (#031)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при a, b, c > 0 имеет место неравенство  

Прислать комментарий     Решение

Задача 30875  (#032)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при  a, b, c > 0  имеет место неравенство   ab/c + ac/b + bc/a ≥ a + b + c.

Прислать комментарий     Решение

Задача 30876  (#033)

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что при  a, b, c > 0  имеет место неравенство  

Прислать комментарий     Решение

Задача 30877  (#034)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при  a, b, c ≥ 0  имеет место неравенство  (ab + bc + ca)² ≥ 3abc(a + b + c).

Прислать комментарий     Решение

Задача 30878  (#035)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Сумма трёх положительных чисел равна 6. Докажите, что сумма их квадратов не меньше 12.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .