|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри выпуклого четырёхугольника ABCD, в котором AB = CD, выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°. Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла? В окружность радиуса R вписан многоугольник площади S, содержащий центр окружности, и на его сторонах выбрано по точке. Докажите, что периметр выпуклого многоугольника с вершинами в выбранных точках не меньше 2S/R. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83]
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при a, b, c > 0 имеет место неравенство ab/c + ac/b + bc/a ≥ a + b + c.
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при a, b, c ≥ 0 имеет место неравенство (ab + bc + ca)² ≥ 3abc(a + b + c).
Сумма трёх положительных чисел равна 6. Докажите, что сумма их квадратов не меньше 12.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|