|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL. Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$. |
Страница: 1 2 >> [Всего задач: 8]
Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что px = y³ + 1.
На диагонали AC выпуклого четырёхугольника ABCD выбрана
точка K, для которой KD = DC, ∠BAC = ½ KDC, ∠DAC = ½ ∠KBC.
Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают.
Квадратные трёхчлены P(x) = x² + ax + b и Q(x) = x² + cx + d таковы, что уравнение P(Q(x)) = Q(P(x)) не имеет действительных корней.
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|