ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан равнобедренный треугольник ABC с основанием AC. H – точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так, что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный треугольник.

Вниз   Решение


Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 98619  (#6)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Касающиеся окружности ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4-
Классы: 8,9

Трапеция с основаниями AD и BC описана вокруг окружности, E – точка пересечения её диагоналей. Докажите, что угол AED не может быть острым.

Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .