|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На бумажной ленте напечатаны автобусные билеты с номерами от 000 000 до 999 999. Затем синей краской пометили те билеты, у которых сумма цифр, стоящих на чётных местах, равна сумме цифр, стоящих на нечётных местах. Какая будет наибольшая разность между номерами двух соседних синих билетов? Неравенство
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
|
Страница: 1 2 >> [Всего задач: 8]
Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника.
Докажите, что
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Страница: 1 2 >> [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|