ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Том Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы? |
Страница: << 1 2 3 >> [Всего задач: 11]
Для данного треугольника ABC, один из углов которого больше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Треугольник A1B1C1 получен из треугольника
ABC поворотом на угол
Дан треугольник ABC. Постройте прямую, делящую
пополам его площадь и периметр.
На векторах
Докажите, что три прямые, симметричные произвольной прямой, проходящей
через точку пересечения высот треугольника, относительно сторон
треугольника, пересекаются в одной точке.
Страница: << 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке