ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?
Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.
Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством. |
Страница: << 1 2 3 >> [Всего задач: 11]
Для данного треугольника ABC, один из углов которого больше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Треугольник A1B1C1 получен из треугольника
ABC поворотом на угол
Дан треугольник ABC. Постройте прямую, делящую
пополам его площадь и периметр.
На векторах
Докажите, что три прямые, симметричные произвольной прямой, проходящей
через точку пересечения высот треугольника, относительно сторон
треугольника, пересекаются в одной точке.
Страница: << 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке