Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?

Вниз   Решение


Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

ВверхВниз   Решение


Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 57949

Тема:   [ Поворот (прочее) ]
Сложность: 4+
Классы: 9

Для данного треугольника ABC, один из углов которого больше 120o, найдите точку, сумма расстояний от которой до вершин минимальна.
Прислать комментарий     Решение


Задача 57950

Тема:   [ Поворот (прочее) ]
Сложность: 4+
Классы: 9

Треугольник A1B1C1 получен из треугольника ABC поворотом на угол $ \alpha$ ($ \alpha$ < 180o) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон AB и A1B1, BC и B1C1, CA и C1A1 (или их продолжений) являются вершинами треугольника, подобного треугольнику ABC.
Прислать комментарий     Решение


Задача 57951

Тема:   [ Поворот (прочее) ]
Сложность: 6
Классы: 9

Дан треугольник ABC. Постройте прямую, делящую пополам его площадь и периметр.
Прислать комментарий     Решение


Задача 57952

Тема:   [ Поворот (прочее) ]
Сложность: 6+
Классы: 9

На векторах $ \overrightarrow{A_iB_i}$, где i = 1,..., k, построены правильные одинаково ориентированные n-угольники AiBiCiDi... (n$ \ge$4). Докажите, что k-угольники C1...Ck и  D1...Dk правильные одинаково ориентированные тогда и только тогда, когда k-угольники A1...Ak и  B1...Bk правильные одинаково ориентированные.
Прислать комментарий     Решение


Задача 57953

Тема:   [ Поворот (прочее) ]
Сложность: 6+
Классы: 9

Докажите, что три прямые, симметричные произвольной прямой, проходящей через точку пересечения высот треугольника, относительно сторон треугольника, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .