|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых. Девять одинаковых конфет стоят 11 рублей с копейками, а тринадцать таких конфет стоят 15 рублей с копейками. Сколько стоит одна конфета? В треугольнике ABC взята такая точка O, что ∠COA = ∠B + 60°, ∠COB = ∠A + 60°, AOB = ∠C + 60°. Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны. |
Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 7526]
Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?
Может ли сумма 1 + 2 + 3 + ... + (n – 1) + n при каком-нибудь натуральном n оканчиваться цифрой 7?
Решить в целых числах уравнения a) 1/a + 1/b = 1/7; б) 1/a + 1/b = 1/25.
Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|