|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В каждую клетку квадратной таблицы размера (2n – 1)×(2n – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Получите формулу для корня уравнения x³ + px + q = 0:
Решите уравнение x³ + x – 2 = 0 подбором и по формуле Кардано.
Выпишите уравнение, корнем которого будет число
При всех значениях параметра a найдите число действительных корней уравнения x³ – x – a = 0.
Решите уравнение
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|