|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? Найдите наибольшее значение функции y = 11 cos x+12x-7 на отрезке [- |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 7526]
Докажите, что биссектрисы равностороннего треугольника делятся точкой пересечения в отношении 2 : 1, считая от вершины треугольника.
Гипотенуза прямоугольного треугольника равна a, один из острых
углов равен α.
Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.
Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
На катете AC прямоугольного треугольника ABC как на диаметре
построена окружность, пересекающая гипотенузу AB в точке K.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|