|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны четыре прямые m1, m2, m3, m4, пересекающиеся в одной точке O. Через произвольную точку A1 прямой m1 проводим прямую, параллельную прямой m4, до пересечения с прямой m2 в точке A2, через A2 проводим прямую, параллельную m1, до пересечения с m3 в точке A3, через A3 проводим прямую, параллельную m2, до пересечения с m4 в точке A4 и через точку A4 проводим прямую, параллельную m3, до пересечения с m1 в точке B. Доказать, что OB Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°. |
Страница: 1 [Всего задач: 3]
В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета.
Страна называется пятёрочной, если в ней каждый город соединён авиалиниями ровно с пятью другими городами (международных рейсов нет).
Страница: 1 [Всего задач: 3] |
||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|