ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.

Вниз   Решение


В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78536  (#1)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Многоугольники (прочее) ]
Сложность: 4
Классы: 8,9

Внутри равностороннего (не обязательно правильного) семиугольника A1A2...A7 взята произвольно точка O. Обозначим через H1, H2,..., H7 основания перпендикуляров, опущенных из точки O на стороны A1A2, A2A3,..., A7A1 соответственно. Известно, что точки H1, H2,..., H7 лежат на самих сторонах, а не на их продолжениях. Доказать, что A1H1 + A2H2 + ... + A7H7 = H1A2 + H2A3 + ... + H7A1.
Прислать комментарий     Решение


Задача 78533  (#2)

Темы:   [ Обратный ход ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10

В n стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких n можно в конечное число шагов слить воду в один стакан?
Прислать комментарий     Решение


Задача 78538  (#3)

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9,10

Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.
Прислать комментарий     Решение


Задача 78539  (#4)

Темы:   [ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10

В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.
Прислать комментарий     Решение


Задача 78540  (#5)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

На клетчатой бумаге начерчена замкнутая ломаная с вершинами в узлах сетки, все звенья которой равны.
Доказать, что число звеньев такой ломаной чётно.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .