Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше: P2007 или P2008?

Вниз   Решение


Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех сделанных бросках, равна n. Докажите, что при  n ≥ 7  верно равенство  Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).

ВверхВниз   Решение


Петя записал 25 чисел в клетки квадрата 5×5. Известно, что их сумма равна 500. Вася может попросить его назвать сумму чисел в любой клетке и всех её соседях по стороне. Может ли Вася за несколько таких вопросов узнать, какое число записано в центральной клетке?

ВверхВниз   Решение


Можно ли:
  а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
  б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 107713  (#11)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Разные задачи на разрезания ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3
Классы: 8,9

Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

Прислать комментарий     Решение


Задача 107714  (#12)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Все коэффициенты многочлена P(x) – целые числа. Известно, что  P(1) = 1  и что  P(n) = 0  при некотором натуральном n. Найдите n.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .