ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Заданы N-вершинный ориентированный граф с двумя выделенными вершинами v1 и v2 и целое число C. Требуется:
1) определить, существует ли в заданном графе путь из вершины v1 в вершину v2, состоящий из C ребер (путь может иметь самопересечения как по вершинам, так и по ребрам);
2) найти минимум функции | X - C |, где X – количество ребер в некотором пути из v1 в v2 .

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в графе (1 ≤ N ≤ 10). В следующих N строках расположена матрица N × N из нулей и единиц, элемент (i, j) которой равен единице, если в графе есть ребро из вершины i в вершину j, и нулю, если такого ребра нет. (Граф может содержать петли, т.е. ребра, идущие из вершины в саму себя). Элементы матрицы во входном файле записаны без разделительных пробелов. 

Наконец, строка N+2 содержит номера вершин v1 и v2 , а строка N+3 – десятичную запись числа C (1 &le C < 1050).

Выходные данные

В первую строку выходного файла выведите ответ на первый пункт задачи: «Yes», если путь длины C существует, и «No», если нет. Во вторую строку запишите ответ на второй пункт задачи. Если ни одного пути из v1 в v2 не существует, ваша программа должна вывести -1.

Пример входного файла

3
010
001
100
1 1
555555555555555555555555555555555

Пример выходного файла

Yes
0

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 65270

Темы:   [ Дискретное распределение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

Прислать комментарий     Решение

Задача 65273

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 9,10,11

Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех сделанных бросках, равна n. Докажите, что при  n ≥ 7  верно равенство  Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).

Прислать комментарий     Решение

Задача 65262

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
  а) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место?
  б) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место, а спортсмен, у которого сумма всех 10 оценок минимальна, занял первое место?

Прислать комментарий     Решение

Задача 65263

Темы:   [ Дискретное распределение ]
[ Системы алгебраических нелинейных уравнений ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли:
  а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
  б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?

Прислать комментарий     Решение

Задача 65274

Тема:   [ Дискретное распределение ]
Сложность: 4-
Классы: 9,10,11

На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше: P2007 или P2008?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .