|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету? |
Страница: 1 [Всего задач: 4]
arcsin cos arcsin x и arccos sin arccos x.
Докажите, что 2n > (1 – x)n + (1 + x)n при целом n ≥ 2 и |x| < 1.
В трёхгранный угол с вершиной S вписана сфера с центром в точке O.
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите.
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|