ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2 так, что A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1. Доказать, что A2C2 || AC, C2B2 || CB, B2A2 || BA. |
Страница: 1 [Всего задач: 5]
Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.
Как надо расположить числа 1, 2, ..., 1962 в последовательности a1, a2, ..., a1962, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a1961 – a1962| + |a1962 – a1| была наибольшей?
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
Из чисел x1, x2, x3, x4, x5 можно образовать десять попарных сумм; обозначим их через a1, a2, ..., a10. Доказать, что зная числа a1, a2, ..., a10 (но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа x1, x2, x3, x4, x5.
Две окружности O1 и O2 пересекаются в точках M и P. Обозначим через MA хорду окружности O1, касающуюся окружности O2 в точке M, а через MB — хорду окружности O2, касающуюся окружности O1 в точке M. На прямой MP отложен отрезок PH = MP. Доказать, что четырёхугольник MAHB можно вписать в окружность.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке