ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78477  (#1)

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 78476  (#2)

Темы:   [ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?

Прислать комментарий     Решение

Задача 78478  (#3)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 9,10

a, b, c – любые положительные числа. Доказать, что   + + 3/2.

Прислать комментарий     Решение

Задача 78479  (#4)

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 9,10

Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.)
Прислать комментарий     Решение


Задача 78480  (#5)

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 9,10

Можно ли в прямоугольник с отношением сторон 9 : 16 вписать прямоугольник с отношением сторон 4 : 7 (так, чтобы на каждой стороне первого прямоугольника лежала вершина второго)?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .