ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 58110  (#22.001)

Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9

На плоскости дано n точек, причем любые четыре из них являются вершинами выпуклого четырехугольника. Докажите, что эти точки являются вершинами выпуклого n-угольника.
Прислать комментарий     Решение


Задача 58111  (#22.002)

Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9

На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника.
Прислать комментарий     Решение


Задача 58112  (#22.002B)

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугольника.
Прислать комментарий     Решение


Задача 58113  (#22.003)

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

На плоскости дано несколько правильных n-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее n углов.
Прислать комментарий     Решение


Задача 58114  (#22.004)

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

Среди всех таких чисел n, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части) n треугольников, найдите наименьшее.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .