Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть  (a, b) = 1  и  a | bc.  Докажите, что  a | c.

Вниз   Решение


a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

ВверхВниз   Решение


Вася задумал три различные цифры, отличные от нуля. Петя записал все возможные двузначные числа, в десятичной записи которых использовались только эти цифры. Сумма записанных чисел равна 231. Найдите цифры, задуманные Васей.

ВверхВниз   Решение


Постройте окружность, проходящую через две данные точки и касающуюся данной окружности (или прямой).

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 111338  (#6)

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Равносоставленные фигуры ]
[ Площади криволинейных фигур ]
Сложность: 5
Классы: 9,10,11

Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .