ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В массиве М [1:9] записаны разряды (цифры) некоторого натурального числа в I-ричной системе счисления (М [1]-разряд единиц и т.д.). Отпечатать разряды этого числа в J-ричной системе счисления, начиная с разряда единиц Числа I, J не превосходят 10.

Вниз   Решение


Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.

ВверхВниз   Решение


Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
  а)  P(n) ≥ n – 3;
  б)  P(n) ≤ 2n – 7;
  в)  P(n) ≤ 2n – 10  при  n ≥ 13.

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]      



Задача 79637

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 2+
Классы: 7,8

На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника.
Прислать комментарий     Решение


Задача 79647

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Расположите в порядке возрастания числа: 2222, 2222, 2222.

Прислать комментарий     Решение

Задача 79650

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8

Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

Прислать комментарий     Решение

Задача 86478

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 7,8

Доказать, что при любых натуральных m и n число  10m + 1  не делится на  10n − 1.

Прислать комментарий     Решение

Задача 86480

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8

Доказать, что числа  27x + 4  и  18x + 3  взаимно просты при любом натуральном x.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .