ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 21970  (#001)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7

В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?
Прислать комментарий     Решение


Задача 21971  (#002)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.
Прислать комментарий     Решение


Задача 21972  (#003)

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21973  (#004)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7,8

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Прислать комментарий     Решение


Задача 21974  (#005)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .