Страница: 1 [Всего задач: 4]
Задача
78784
(#1)
|
|
Сложность: 3- Классы: 7,8
|
Существует ли число, квадрат которого начинается с цифр 123456789 и кончается
цифрами 987654321?
Задача
55723
(#2)
|
|
Сложность: 4+ Классы: 8,9,10
|
Внутри квадрата
A1A2A3A4 взята точка P. Из вершины
A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр
на A3P, из A3 — на A4P, из A4 — на
A1P. Докажите, что все четыре перпендикуляра (или их продолжения)
пересекается в одной точке.
Задача
78786
(#3)
|
|
Сложность: 4- Классы: 7,8,9,10
|
В колбе находится колония из
n бактерий. В какой-то момент внутрь колбы
попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же
после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту
новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся
бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда
не останется ни одной бактерии?
Задача
78787
(#4)
|
|
Сложность: 3+ Классы: 8,9
|
Имеется сетка, состоящая из квадратов размером 1×1. Каждый её узел
покрашен в один из четырёх данных цветов так, что вершины любого квадрата
1×1 покрашены в разные цвета. Доказать, что найдётся прямая,
принадлежащая сетке, такая, что узлы, лежащие на ней, покрашены в два цвета.
Страница: 1 [Всего задач: 4]