ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 78784  (#1)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8

Существует ли число, квадрат которого начинается с цифр 123456789 и кончается цифрами 987654321?
Прислать комментарий     Решение


Задача 55723  (#2)

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9,10

Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

Прислать комментарий     Решение


Задача 78786  (#3)

Тема:   [ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9,10

В колбе находится колония из n бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?
Прислать комментарий     Решение


Задача 78787  (#4)

Темы:   [ Целочисленные решетки ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Имеется сетка, состоящая из квадратов размером 1×1. Каждый её узел покрашен в один из четырёх данных цветов так, что вершины любого квадрата 1×1 покрашены в разные цвета. Доказать, что найдётся прямая, принадлежащая сетке, такая, что узлы, лежащие на ней, покрашены в два цвета.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .