Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2+ Классы: 7,8,9
|
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
|
|
Сложность: 4- Классы: 7,8,9
|
Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.
Задача
30292
(#3)
|
|
Сложность: 3- Классы: 6,7
|
Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?
|
|
Сложность: 3 Классы: 7,8,9
|
С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.)
|
|
Сложность: 3 Классы: 7,8,9
|
На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Страница: 1
2 >> [Всего задач: 6]