ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 64557  (#8.1.1)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 8,9

Найдите сумму цифр в десятичной записи числа 412·521.

Прислать комментарий     Решение

Задача 64558  (#8.1.2)

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Диагональ BD параллелограмма ABCD образует углы по 45° со стороной BC и высотой, проведённой из вершины D к стороне АВ.
Найдите угол АСD.

Прислать комментарий     Решение

Задача 64559  (#8.1.3)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Может ли разность квадратов двух простых чисел быть квадратом натурального числа?

Прислать комментарий     Решение

Задача 64560  (#8.2.1)

Темы:   [ Тождественные преобразования ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

Прислать комментарий     Решение

Задача 64561  (#8.2.2)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .