ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 64567  (#8.4.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

На равных сторонах AB и BC треугольника ABC выбраны точки M и N соответственно так, что  AC = CM  и  MN = NB.  Высота треугольника, проведенная из вершины B, пересекает отрезок CM в точке H. Докажите, что NH – биссектриса угла MNC.

Прислать комментарий     Решение

Задача 64568  (#8.4.3)

Темы:   [ Числовые последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .