ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ребро SA пирамиды SABC перпендикулярно плоскости ABC , AB=2 , AC=1 , BAC = 120o , SA=3 . Сечения пирамиды двумя параллельными плоскстями, одна из которых проходит через точку C и середину ребра AB , а другая – через точку B , имеют равные площади. В каком отношении делят ребро SA плоскости сечений? Найдите объёмы многогранников, на которые разбивают пирамиду плоскости сечений, а также расстояние между этими плоскостями.

   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 644]      



Задача 102816

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перпендикулярные прямые ]
[ Пересекающиеся окружности ]
Сложность: 2+
Классы: 7,8

Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)

Прислать комментарий     Решение

Задача 102832

 [Влажность травы]
Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 6,7

Влажность свежескошенной травы 60%, сена 15%. Сколько сена получится из одной тонны свежескошенной травы?

Прислать комментарий     Решение

Задача 102833

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Что больше 2700 или 5300?

Прислать комментарий     Решение

Задача 102839

 [Запись даты]
Тема:   [ Правило произведения ]
Сложность: 2+
Классы: 7,8

В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?

Прислать комментарий     Решение

Задача 102840

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .