Версия для печати
Убрать все задачи
Пусть a, b, c, d – такие вещественные числа, что
a³ + b³ + c³ + d³ = a + b + c + d = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.

Решение
Обозначим
S(
x)
сумму цифр числа
x . Найдутся ли три таких натуральных числа
a ,
b и
c , что
S(
a+b)
<5
,
S(
a+c)
<5
и
S(
b+c)
<5
,
но
S(
a+b+c)
>50
?


Решение
Даны четыре окружности, причем окружности
S1
и
S3 пересекаются с обеими окружностями
S2 и
S4. Докажите,
что если точки пересечения
S1 с
S2 и
S3 с
S4 лежат на одной
окружности или прямой, то и точки пересечения
S1 с
S4 и
S2
с
S3 лежат на одной окружности или прямой (рис.).

Решение