|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей. Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение f(f(...f(x))) = 0 (n букв "f") имеет ровно 2n различных действительных корней? Икосаэдр и додекаэдр вписаны в одну и ту же сферу. Докажите, что тогда они описаны вокруг одной и той же сферы. В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$. |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 644]
Попробуйте найти два числа, идущих подряд; у первого из которых сумма цифр равна 8, а второе делится на 8.
Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 644] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|