ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 644]      



Задача 104022

Тема:   [ Куб ]
Сложность: 3
Классы: 7,8,9

Через каждую грань куба провели плоскость. На сколько частей разделят пространство данные плоскости?
Прислать комментарий     Решение


Задача 104027

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8,9

В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Прислать комментарий     Решение


Задача 108405

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.)
Прислать комментарий     Решение


Задача 108412

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 7,8,9

Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
Прислать комментарий     Решение


Задача 30302

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 6,7

Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .