|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан вписанный $n$-угольник. Оказалось что середины всех его сторон лежат на одной окружности. Стороны $n$-угольника отсекают от этой окружности $n$ дуг, лежащих вне $n$-угольника. Докажите, что эти дуги можно покрасить в красный и синий цвет так, чтобы сумма длин красных дуг равнялась сумме длин синих. По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик? |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Доказать, что
Два совершенно одинаковых катера, имеющих одинаковую скорость в стоячей воде, проходят по двум различным рекам одинаковое расстояние (по течению) и возвращаются обратно (против течения). В какой реке на эту поездку потребуется больше времени: в реке с быстрым течением или в реке с медленным течением?
Сплав из золота и серебра массой 13 кг 850 г при полном погружении в воду вытеснил 900 г воды. Определить количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19,3 кг/дм3, а серебра – 10,5 кг/дм3.
Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|