|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дано изображение (параллельная проекция на некоторую плоскость) треугольника и центра описанной около него окружности. Постройте изображение точки пересечения высот этого треугольника. На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника. На плоскости нарисована линия, являющаяся изображением (параллельной проекцией на некоторую плоскость) окружности. Постройте изображение центра этой окружности. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]
Окружность с центром O, вписанная в треугольник ABC, касается сторон AC, AB и BC в точках K, M и N соответственно. Медиана BB1 треугольника пересекает MN в точке D. Докажите, что точка O лежит на прямой DK.
Найдите все такие тройки натуральных чисел m, n и l, что m + n = (НОД(m, n))², m + l = (НОД(m, l))², n + l = (НОД(n, l))².
Решите в целых числах уравнение (x² – y²)² = 1 + 16y.
Переаттестация Совета Мудрецов происходит так: король выстраивает их в колонну по одному и надевает каждому колпак белого, синего или красного цветов. Все мудрецы видят цвета всех колпаков впереди стоящих мудрецов, а цвет своего и всех стоящих сзади не видят. Раз в минуту один из мудрецов должен выкрикнуть один из трёх цветов (каждый мудрец выкрикивает цвет один раз).
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|