ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



Задача 109911  (#97.4.11.7)

Темы:   [ Неравенства с трехгранными углами ]
[ Четырехугольная пирамида ]
[ Тетраэдр (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 10,11

Существуют ли выпуклая n -угольная ( n 4 ) и треугольная пирамиды такие, что четыре трехгранных угла n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Прислать комментарий     Решение


Задача 109912  (#97.4.11.8)

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 10,11

Для каких α существует функция f : , отличная от константы, такая, что

f(α(x+y))=f(x)+f(y);?

Прислать комментарий     Решение

Задача 109653  (#97.5.9.1)

Темы:   [ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

Прислать комментарий     Решение

Задача 109654  (#97.5.9.2)

Темы:   [ Поворот на $90^\circ$ ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5-
Классы: 9,10,11

Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .
Прислать комментарий     Решение


Задача 109655  (#97.5.9.3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Боковая поверхность параллелепипеда ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Симметрия и инволютивные преобразования ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .