Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]
Задача
109911
(#97.4.11.7)
|
|
Сложность: 4+ Классы: 10,11
|
Существуют ли выпуклая
n -угольная (
n 4
)
и треугольная пирамиды такие, что четыре трехгранных угла
n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Задача
109912
(#97.4.11.8)
|
|
Сложность: 4- Классы: 10,11
|
Для каких
α существует функция
f :
,
отличная от константы, такая, что
f(α(x+y))=f(x)+f(y);?
Задача
109653
(#97.5.9.1)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть P(x) – квадратный трёхчлен с неотрицательными
коэффициентами.
Докажите, что для любых действительных чисел x и y
справедливо неравенство (P(xy))² ≤ P(x²)P(y²).
Задача
109654
(#97.5.9.2)
|
|
Сложность: 5- Классы: 9,10,11
|
Выпуклый многоугольник
M переходит в себя при повороте
на угол
90
o . Докажите, что найдутся два круга с отношением радиусов,
равным
, один из которых содержит
M , а другой содержится
в
M .
Задача
109655
(#97.5.9.3)
|
|
Сложность: 3+ Классы: 9,10,11
|
Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]