ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

За одну операцию можно поменять местами любые две строки или любые два столбца квадратной таблицы. Можно ли за несколько таких операций из закрашенной фигуры, изображённой на рисунке слева, получить закрашенную фигуру, изображённую на рисунке справа?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



Задача 110151  (#04.4.11.7)

Темы:   [ Неравенства для углов треугольника ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
Сложность: 6+
Классы: 10,11

При каких натуральных n для любых чисел α , β , γ , являющихся величинами углов остроугольного треугольника, справедливо неравенство

sin nα + sin nβ + sin nγ<0?

Прислать комментарий     Решение

Задача 110152  (#04.4.11.8)

Темы:   [ Тетраэдр (прочее) ]
[ Параллельность прямых и плоскостей ]
[ Симметрия относительно плоскости ]
[ Движение помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5+
Классы: 10,11

Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .