|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке. Встретились несколько аборигенов (каждый — либо лжец, либо — рыцарь), и каждый заявил всем остальным: «Вы все — лжецы». Сколько рыцарей было среди них? |
Страница: << 1 2 [Всего задач: 8]
Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d.
В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD.
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|