|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке. Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|. |
Страница: << 1 2 [Всего задач: 8]
Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d.
В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD.
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|