Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Если у осьминога четное число ног, он всегда говорит правду. Если нечетное, то он всегда лжет. Однажды зеленый осьминог сказал темно-синему:
- У меня 8 ног. А у тебя только 6.
- Это у меня 8 ног, - обиделся темно-синий. - А у тебя всего 7.
- У темно-синего действительно 8 ног, - поддержал фиолетовый и похвастался: - А вот у меня целых 9!
- Ни у кого из вас не 8 ног, - вступил в разговор полосатый осьминог. - Только у меня 8 ног!
У кого из осьминогов было ровно 8 ног?

   Решение

Задачи

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 7526]      



Задача 108524

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Прислать комментарий     Решение

Задача 108525

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

Прислать комментарий     Решение

Задача 108539

Темы:   [ Метод координат на плоскости ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.

Прислать комментарий     Решение


Задача 115924

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна   ,   углы, прилежащие к ней, равны 75° и 60°.
Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.

Прислать комментарий     Решение

Задача 116328

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3-
Классы: 9,10

На боковых сторонах AB и CD трапеции ABCD расположены точки M и N соответственно, причём  BM : AM = CN : ND = 3 : 5.
Найдите MN, если  BC = a  и  AD = b.

Прислать комментарий     Решение

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .