ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

Вниз   Решение


Докажите, что следующие свойства тетраэдра равносильны:

1) все грани равновелики;

2) каждое ребро равно противоположному;

3) все грани равны;

4) центры описанной и вписанной сфер совпадают;

5) суммы углов при каждой вершине равны;

6) сумма плоских углов при каждой вершине равна 180o ;

7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;

8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;

9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;

10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;

11) высоты тетраэдра равны;

12) точка пересечения медиан совпадает с центром описанной сферы;

13) точка пересечения медиан совпадает с центром вписанной сферы;

14) сумма плоских углов при трёх вершинах равна 180o ;

15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны.

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 116976  (#7.1)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 5,6,7

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число x, при котором значение выражения  x² – 9x + 13  отрицательно. А если ввести число x, при котором отрицательно значение выражения  x² + x – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

Прислать комментарий     Решение

Задача 116970  (#7.2)

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 5,6,7

Пусть на плоскости отмечено несколько точек. Назовём прямую нечестной, если она проходит ровно через три отмеченные точки и по разные стороны от неё отмеченных точек не поровну. Можно ли отметить 7 точек и провести для них 5 нечестных прямых?

Прислать комментарий     Решение

Задача 116978  (#7.3)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 5,6,7

Автор: Фольклор

Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?

Прислать комментарий     Решение

Задача 116971  (#7.4)

Тема:   [ Задачи с ограничениями ]
Сложность: 3+
Классы: 5,6,7

Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?

Прислать комментарий     Решение

Задача 116980  (#7.5)

Темы:   [ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 5,6,7

В треугольнике ABC на стороне AB выбрана точка K и проведены биссектриса KE треугольника AKC и высота KH треугольника BKC. Оказалось, что угол EKH – прямой. Найдите BC, если  HC = 5.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .