ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 116534

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Известно, что x, y и z – целые числа и  xy + yz + zx = 1.  Докажите, что число  (1 + x²)(1 + y²)(1 + z²)  является квадратом натурального числа.

Прислать комментарий     Решение

Задача 116616

Темы:   [ Площадь трапеции ]
[ Перегруппировка площадей ]
[ Площадь параллелограмма ]
[ Площадь треугольника (через высоту и основание) ]
[ Медиана делит площадь пополам ]
[ Вспомогательные равные треугольники ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

В трапеции ABCD  (AD || BC)  из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если  АВ = 5,  EF = 4.

Прислать комментарий     Решение

Задача 116617

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Найдите все пары  (p, q)  простых чисел, разность пятых степеней которых также является простым числом.

Прислать комментарий     Решение

Задача 116732

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?

Прислать комментарий     Решение

Задача 116737

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .