ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN. На окружности отметили 4n точек и окрасили их
через одну в красный и синий цвета. Точки каждого цвета
разбили на пары, а точки каждой пары соединили отрезками
того же цвета. Докажите, что если никакие три отрезка не
пересекаются в одной точке, то найдется по крайней мере n
точек пересечения красных отрезков с синими.
|
Страница: 1 [Всего задач: 5]
Пусть a^b обозначает число ab. В выражении 7^7^7^7^7^7^7 надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.
Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N.
Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке