ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка.
Может ли оказаться, что из этих отрезков можно сложить треугольник?

Вниз   Решение


У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 79311

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 11

Найти все положительные решения системы уравнений
   

Прислать комментарий     Решение

Задача 79313

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Классические неравенства (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 10,11

Каковы первые четыре цифры числа  11 + 2² + 3³ + ... + 999999 + 10001000?

Прислать комментарий     Решение

Задача 79324

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 9,10

Может ли число n! оканчиваться цифрами 19760...0?

Прислать комментарий     Решение

Задача 79312

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Задача 79318

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8

Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .