ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



Задача 97981

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Прислать комментарий     Решение

Задача 30310

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки ]
Сложность: 3+
Классы: 6,7,8

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Прислать комментарий     Решение

Задача 30954

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.

Прислать комментарий     Решение

Задача 30955

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 6,7,8

По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
  a) Могут ли все числа стать нулями, если их 13 штук?   б) Могут ли все числа стать единицами, если их 14 штук?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .