ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 56949

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 3
Классы: 9

Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что  B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56950

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9

Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A2, B2 и C2A1B1C1 — подерный треугольник точки P относительно треугольника ABC (см. задачу 5.99). Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$A2B2C2.
Прислать комментарий     Решение


Задача 56951

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9

Внутри остроугольного треугольника ABC дана точка P. Опустив из нее перпендикуляры PA1, PB1 и PC1 на стороны, получим  $ \triangle$A1B1C1. Проделав для него ту же операцию, получим  $ \triangle$A2B2C2, а затем  $ \triangle$A3B3C3. Докажите, что  $ \triangle$A3B3C3 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56952

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 6
Классы: 9

Треугольник ABC вписан в окружность радиуса R с центром O. Докажите, что площадь подерного треугольника точки P относительно треугольника ABC (см. задачу 5.99) равна  $ {\frac{1}{4}}$$ \left\vert\vphantom{1-\frac{d^2}{R^2}}\right.$1 - $ {\frac{d^2}{R^2}}$$ \left.\vphantom{1-\frac{d^2}{R^2}}\right\vert$SABC, где d = PO.
Прислать комментарий     Решение


Задача 56953

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 6
Классы: 9

Из точки P опущены перпендикуляры PA1, PB1 и PC1 на стороны треугольника ABC. Прямая la соединяет середины отрезков PA и B1C1. Аналогично определяются прямые lb и lc. Докажите, что эти прямые пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .