ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках A и B,
причем касательные к S1 в этих точках являются радиусами S2. На
внутренней дуге S1 взята точка C и соединена с точками A и B
прямыми. Докажите, что вторые точки пересечения этих прямых с S2
являются концами одного диаметра.
С помощью циркуля и линейки постройте на данной прямой точку, равноудаленную от двух данных точек.
Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом? Докажите по индукции формулу Бине:
Fn = где
Найдите угол при вершине осевого сечения конуса, если образующая конуса в два раза больше его высоты. |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173]
Докажите равенство (Fn, Fm) = F(m, n).
В последовательности чисел Фибоначчи выбрано
8 чисел, идущих подряд. Докажите, что их сумма не является
числом Фибоначчи.
Рассмотрим множество последовательностей длины
n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих
рядом. Докажите, что количество таких последовательностей равно
Fn + 2. Найдите взаимно-однозначное соответствие между такими
последовательностями и маршрутами кузнечика из задачи 3.109.
Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде
n = где все числа b2, ..., bm
равны 0 либо 1, причем среди этих чисел нет двух единиц
стоящих рядом, то есть
bkbk + 1 = 0
(2
n = (bk...b2)F.
Докажите по индукции формулу Бине:
Fn = где
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке