ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В правильной треугольной пирамиде SABC ( S – вершина) точки K
и L являются серединами рёбер AB и AC соответственно. Через точку
L проведена плоскость β , пересекающая рёбра BC и SC и
удалённая от точек K и C на одинаковое расстояние, равное
В правильной четырёхугольной пирамиде SABCD ( S – вершина) точка
F – середина ребра SB , а SA= |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий
отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы
один круг. Доказать, что N Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.
Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке