ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известно, что модули всех корней уравнений x² + Ax + B = 0, x² + Cx + D = 0 меньше единицы. Доказать, что модули корней уравнения
Окружность радиуса R, проведённая через вершины A, B и
C прямоугольной трапеции ABCD (
В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны. |
Страница: << 1 2 [Всего задач: 8]
Сколько сторон может иметь выпуклый многоугольник,
все диагонали которого имеют одинаковую длину?
На плоскости даны n красных и n синих точек,
никакие три из которых не лежат на одной прямой. Докажите,
что можно провести n отрезков с разноцветными концами, не имеющих
общих точек.
Пусть дан выпуклый (2n + 1)-угольник
A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с
вершинами в его вершинах наибольшую длину имеет
ломаная
A1A2A3...A2n + 1A1.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке