ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Вниз   Решение


Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 36048

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 6,7

Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

Прислать комментарий     Решение

Задача 36049

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 6,7

Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала?

Прислать комментарий     Решение

Задача 88034

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 5,6,7

Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?

Прислать комментарий     Решение

Задача 30292

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Прислать комментарий     Решение

Задача 30299

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7

Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .