ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 56781

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Середины диагоналей  AC, BD, CE,... выпуклого шестиугольника ABCDEF образуют выпуклый шестиугольник. Докажите, что его площадь в четыре раза меньше площади исходного шестиугольника.
Прислать комментарий     Решение


Задача 56782

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Диаметр PQ и перпендикулярная ему хорда RS пересекаются в точке A. Точка C лежит на окружности, а точка B — внутри окружности, причем  BC || PQ и BC = RA. Из точек A и B опущены перпендикуляры AK и BL на прямую CQ. Докажите, что  SACK = SBCL.
Прислать комментарий     Решение


Задача 56783

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке O; P и Q — произвольные точки. Докажите, что

$\displaystyle {\frac{S_{AOP}}{S_{BOQ}}}$ = $\displaystyle {\frac{S_{ACP}}{S_{BDQ}}}$ . $\displaystyle {\frac{S_{ABD}}{S_{ABC}}}$.


Прислать комментарий     Решение

Задача 56784

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Через точку O, лежащую внутри треугольника ABC, проведены отрезки, параллельные сторонам. Отрезки AA1, BB1 и CC1 разбивают треугольник ABC на четыре треугольника и три четырехугольника (рис.). Докажите, что сумма площадей треугольников, прилегающих к вершинам A, B и C, равна площади четвертого треугольника.


Прислать комментарий     Решение

Задача 56785

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

На биссектрисе угла A треугольника ABC взята точка A1 так, что  AA1 = p - a = (b + c - a)/2, и через точку A1 проведена прямая la, перпендикулярная биссектрисе. Если аналогично провести прямые lb и lc, то треугольник ABC разобьется на части, среди которых четыре треугольника. Докажите, что площадь одного из этих треугольников равна сумме площадей трех других.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .